

Hunter Water Corporation

ABN 46 228 513 446 Customer Enquiries 1300 657 657 enquiries@hunterwater.com.au PO Box 5171 HRMC NSW 2310 36 Honeysuckle Drive NEWCASTLE NSW 2300

Hunter Water Corporation A.B.N. 46 228 513 446

# OPERATING AND MAINTENANCE COST ESTIMATING GUIDELINE

This Guideline was developed by Hunter Water to be used for the estimation of operating and maintenance costs associated with water and/or sewerage works that are, or are to become, the property of Hunter Water. It is intended that this Guideline be used in conjunction with various other standards, codes, guidelines and design requirements as defined by Hunter Water for each particular project.

Hunter Water does not consider this Guideline suitable for use for any other purpose or in any other manner. Use of this Guideline for any other purpose or in any other manner is wholly at the user's risk.

Hunter Water makes no representations or warranty that this Guideline has been prepared with reasonable care and does not assume a duty of care to any person using this document for any purpose other than stated.

In the case of this document having been downloaded from Hunter Water's website:

- Hunter Water has no responsibility to inform you of any matter relating to the accuracy of this document which is known to Hunter Water at the time of downloading or subsequently comes to the attention of Hunter Water.

This document is current at the date of downloading. Hunter Water may update this document at any time.

Copyright in this document belongs to Hunter Water Corporation.

# **DOCUMENT CONTROL**

Document: QDS101 – Operating and Maintenance Cost Estimating Guidelines

Document Owner: Manager Asset Management

Version: 2.0 - October 2013

HWC File Reference: HW2009-2368/1/8.003

### Changes to Revision 1.2 - March 2012

| Old Clause | New Clause | Amendment                                                                                                  |  |
|------------|------------|------------------------------------------------------------------------------------------------------------|--|
| 3          | 3          | Sentence added re: sites with consumption greater than 1GWh/a                                              |  |
|            |            | Table 4 - Year column deleted, FY 2011/2012 and 2012/2103 rows deleted and tariffs updated, source updated |  |
|            |            | 20 replaced with 2031/2032 in last paragraph                                                               |  |
| Cost       | 6          | Examples now Section 6                                                                                     |  |
| Examples   |            | Examples updated to reflect new tariffs.                                                                   |  |
|            |            | Formatting                                                                                                 |  |

# Changes to Revision 1.1 - September 2011

| Old Clause                    | New Clause                    | Amendment                                                                                 |
|-------------------------------|-------------------------------|-------------------------------------------------------------------------------------------|
| 2.1                           | 2.1                           | Network operating cost formulas reformatted and pump station energy calculation clarified |
| 3                             | 3                             | Energy tariffs updated                                                                    |
| 4                             | 4                             | Greenhouse gas section removed, carbon tax requirements added                             |
| Cost<br>Estimating<br>Example | Cost<br>Estimating<br>Example | New example added                                                                         |

# **Table of Contents**

| 1 | So  | cope      |          |                                           | 4  |
|---|-----|-----------|----------|-------------------------------------------|----|
| 2 | A   | nnual Ne  | etwork   | Operation and Maintenance Costs           | 4  |
|   | 2.1 | Sewer     | 4        |                                           |    |
|   | 2.2 | Water     | 4        |                                           |    |
| 3 | EI  | ectricity | ·        |                                           | 6  |
| 4 | Ca  | arbon Ta  | ax       |                                           | 7  |
| 5 | Fu  | urther In | formati  | on                                        | 7  |
| 6 | Co  | ost Estir | nating   | Examples                                  | 8  |
|   | 6.1 | Infrastr  | ucture C | Dperating and Maintenance Cost Formulas 8 |    |
|   | 6.2 | Exampl    | le 1 – P | ump Selection 9                           |    |
|   | 6   | 5.2.1     |          | Scenario:                                 | 9  |
|   | 6   | 5.2.2     |          | Factors considered                        | 9  |
|   | 6   | 5.2.3     |          | System Data                               | 9  |
|   | 6   | 5.2.4     |          | Present value Analysis                    | 10 |
|   | 6.3 | Exampl    | le 2 – P | ump Station Selection 11                  |    |
|   | 6   | 5.3.1     |          | Scenario:                                 | 11 |
|   | 6   | 5.3.2     |          | Factors considered are:                   | 11 |
|   | 6   | 5.3.3     |          | System Data                               | 11 |
|   | 6   | 5.3.4     |          | Present value Analysis                    | 12 |
|   | 6.4 | Exampl    | le 2a    | 13                                        |    |
|   | 6   | 6.4.1     |          | Scenario                                  | 13 |
|   | 6   | 6.4.2     |          | Factors considered are:                   | 13 |
|   | 6   | 6.4.3     |          | System Data                               | 13 |
|   | 6   | 6.4.4     |          | Present Value Analysis                    | 14 |

#### 1 Scope

This guide has been developed to assist designers in estimating operating and maintenance costs, including environmental considerations through greenhouse gas abatement costs, for water and sewer designs. All water and sewer designs, upgrades, renewals or operational changes require an assessment of life-cycle costs, capital and operating, for all proposed options.

This document details values and formulas for network operation and maintenance requirements. It also includes values and tables for incorporating environmental considerations and outlines the process for assigning value to emissions.

Hunter Water should be consulted in determining the operating and maintenance requirements for non-standard networks, such as pressure sewerage.

## 2 Annual Network Operation and Maintenance Costs

The following generic annual operation and maintenance cost formulas and tables are to be used to estimate costs associated with network operations. Alternate data may be used with prior Hunter Water approval where site/project specific information is available.

#### 2.1 Sewer

| Gravity Mains           | \$2872 - 1.13 x DN + 0.00024 x DN2 x L |
|-------------------------|----------------------------------------|
| Rising Mains            | \$700 + 0.0005 x DN2 x L               |
| Sewage Pumping Stations | \$4000 + 2000 x No. of Pumps           |

DN – pipe nominal diameter (mm)

L – pipeline length (km)

Determine pumping station energy usage from an annual flow of 1.2 x ADWF for all catchments contributing to the system. Pump efficiency determined from the current performance for existing systems or the duty point determined from the manufacturers pump curve.

## 2.2 Water

#### Table 1 Water Network Maintenance Costs

| Watermain                  |     |  |  |
|----------------------------|-----|--|--|
| Diameter (mm) Cost (\$/km) |     |  |  |
| 80-100                     | 800 |  |  |
| 150-600                    | 520 |  |  |

#### **Table 2 Water Pump Station Maintenance Cost**

| Power       | Maintenance Costs |                |  |
|-------------|-------------------|----------------|--|
| Consumption | Fixed Speed       | Variable Speed |  |
| (kWh/year)  | (\$/MWh/year)     | (\$/MWh/year)  |  |
| 1,000       | 1,000             | 1,380          |  |

| 2,000    | 720 | 1,100 |
|----------|-----|-------|
| 3,000    | 550 | 910   |
| 4,000    | 440 | 800   |
| 5,000    | 380 | 660   |
| 10,000   | 200 | 500   |
| 15,000   | 120 | 380   |
| 20,000   | 100 | 280   |
| > 25,000 | 85  | 170   |

# **Table 3 Water Pump Station Operational Cost**

| Electricity | Demand Proportion |          |  |
|-------------|-------------------|----------|--|
| Tariff      | Average Day       | Peak Day |  |
| As below    | 80%               | 20%      |  |

### 3 Electricity

The price of electrical supply to an asset includes feed and network tariffs, and connection costs – all of which are dependent on the site's annual power usage.

The Electricity Prices ( $\phi$ /kWh) listed in Table 4 are to be used to determine the annual cost of electricity over the life time of the asset. A small site is defined as one where the metered connection to the electricity grid supplies less than 160 MWhpa. Sites that have annual power consumption greater than 160 MWh are considered large.

More precise pricing information should be sought for sites with consumption greater than 1 GWhpa through consultation with the HWC Energy Efficiency group <u>energy.efficiency@hunterwater.com.au</u>.

| Financial | HWC Electricity Prices (¢/kWh)<br>(2013/14 dollars) |                               |  |
|-----------|-----------------------------------------------------|-------------------------------|--|
| Year      | Small sites (<160<br>MWh/yr)                        | Large sites (≥ 160<br>MWh/yr) |  |
| 2013/14   | 27.8                                                | 16.5                          |  |
| 2014/15   | 29.6                                                | 17.6                          |  |
| 2015/16   | 30.6                                                | 18.2                          |  |
| 2016/17   | 33.0                                                | 19.6                          |  |
| 2017/18   | 35.0                                                | 20.8                          |  |
| 2018/19   | 37.0                                                | 22.0                          |  |
| 2019/20   | 37.1                                                | 22.0                          |  |
| 2020/21   | 38.0                                                | 22.6                          |  |
| 2021/22   | 38.8                                                | 23.0                          |  |
| 2022/23   | 39.2                                                | 23.3                          |  |
| 2023/24   | 39.6                                                | 23.5                          |  |
| 2024/25   | 39.8                                                | 23.6                          |  |
| 2025/26   | 40.9                                                | 24.3                          |  |
| 2026/27   | 40.4                                                | 24.0                          |  |
| 2027/28   | 41.0                                                | 24.3                          |  |
| 2028/29   | 40.9                                                | 24.3                          |  |
| 2029/30   | 40.4                                                | 23.9                          |  |
| 2030/31   | 40.1                                                | 23.8                          |  |
| 2031/32   | 40.3                                                | 23.9                          |  |

#### Table 4 Electricity Prices

Source: Energy Price Forecasts 2013 to 2032 for WSAA by SKM.MMA (Revision 1.0, 13 Nov 2012)

If assessment of life-cycle costs beyond 2031/32 is relevant, a constant electricity price may be projected beyond 2031/32.

## 4 Carbon Tax

Accounting for the cost of abating greenhouse gas (GHG) emissions from Hunter Water's electricity consumption is now incorporated in the electricity price projections above. These include the expected pass-on of the legislated price on carbon that electricity providers will be liable to pay, commencing July 1, 2012.

In addition, Hunter Water may be liable to pay a carbon tax on direct GHG emissions, known as "Scope 1" emissions, depending whether Hunter Water's total Scope 1 emissions meet a determined threshold. Scope 1 emissions constitute GHGs released as a direct result of activities within a corporation's facility. In Hunter Water's case the majority of Scope 1 emissions are fugitive gases released during the treatment of waste water. This includes the production of methane and nitrous oxide from treatment and biosolid processing.

For all wastewater treatment plant projects that will impact on Scope 1 emissions, consult the HWC Energy Efficiency group <u>energy.efficiency@hunterwater.com.au</u>.

# 5 Further Information

Any questions regarding this guideline should be directed to standards@hunterwater.com.au.

## 6 Cost Estimating Examples

The following examples of Options Analysis – Cost Effectiveness Analysis have been included as guides to incorporating operating and maintenance costs into options assessments. Economic analysis for all projects should follow the NSW Treasury Guidelines (<u>http://www.treasury.nsw.gov.au/Publications Page</u>) and Hunter Water guidelines or directions relevant to the project.

# 6.1 Infrastructure Operating and Maintenance Cost Formulas

Determine infrastructure operating and maintenance costs the formulas provided in this guideline.

Determine annual pumping costs from tariffs above, pump characteristics and usage determined during planning/system design and the following energy consumption formula:

$$kWh/Year = \frac{0.0098QHt}{eff}$$

Where

| Q   | = | pumping rate (L/s)                 |
|-----|---|------------------------------------|
| н   | = | total pumping head (m)             |
| t   | = | duration of pumping per year (hrs) |
| eff | = | pump efficiency                    |

Determine future costs from:

$$PV = Cx \frac{1}{\left(1+r\right)^n}$$

Where:

| PV | = | present value           |
|----|---|-------------------------|
| С  | = | cost in current dollars |
| r  | = | discount rate           |
| n  | = | years from current year |

Include the residual value of assets where they have not fully depreciated in the analysis period.

## 6.2 Example 1 – Pump Selection

#### 6.2.1 Scenario:

As part of a renewal strategy pumps at a WWPS require replacement. In this system the rising main is common to a separate pump station for a portion of the length and a preliminary assessment has identified that the two stations will be pumping at same time for approximately 15% of the time. A preliminary assessment has identified 2 pumps types as being suitable and a Cost Effectiveness Analysis is required to determine the most suitable pump.

#### 6.2.2 Factors considered

- Existing system, with little growth anticipated over the analysis period.
- Both pumps selected have a design life of 15 years.
- Pump station and rising mains maintenance costs are the same for both options
- 20 yr life cycle cost period with a 7% discount rate.
- Sensitivity analysis required at discount rates of 4% and 10%.

#### 6.2.3 System Data

| Base Year                                          | 2013/2014                           |                     |
|----------------------------------------------------|-------------------------------------|---------------------|
| Pumping Station Structure Capital /<br>Maintenance | Constant for both options – omitted |                     |
| Rising Main Capital / Maintenance                  | Constant for both                   | n options – omitted |
| ADWF                                               | 2                                   | 2.1                 |
| Design Flow                                        | 14                                  | .1 l/s              |
|                                                    | Option 1                            | Option 2            |
| Pump Type                                          | Brand X                             | Brand Y             |
| Pump Cost                                          | \$25,500                            | \$19,500            |
| Single Duty Flowrate (L/s)                         | 21.9                                | 22.5                |
| Single Duty Head (m)                               | 27.9                                | 28.3                |
| Single Duty Efficiency                             | 56.6%                               | 40.0%               |
| Common Duty Flowrate (L/s)                         | 15.6                                | 16.0                |
| Common Duty Head (m)                               | 29.7                                | 29.4                |
| Common Duty Efficiency                             | 47.6%                               | 33.0%               |
| Common pumping                                     | 15%                                 | 15%                 |
| Pump Replacement                                   | 15 years                            | 15 years            |

#### 6.2.4 Present value Analysis

|                                       | Discounted Cashflow (NPV) (20 year Period) |                  |  |
|---------------------------------------|--------------------------------------------|------------------|--|
|                                       | Option 1 (\$,000)                          | Option 2(\$,000) |  |
| Lifecycle costs(7% discount rate)     | 75                                         | 88               |  |
| Discounted Cashflow Sensitivity @ 4%  | 88                                         | 106              |  |
| Discounted Cashflow Sensitivity @ 10% | 65                                         | 75               |  |

The Cost Effectiveness Analysis indicates that Option 1 represents the lower life cycle cost. In this case the improved efficiency of the pumps selected for Option 1 offsets the higher capital cost. Sensitivity analysis indicated that Option 1 remained the lower life cycle cost with both an increase and decrease in future Discount Rate.

## 6.3 Example 2 – Pump Station Selection

#### 6.3.1 Scenario:

As part of a servicing strategy, a new pump station is required to service a new development area. The most suitable location of the new station would allow an existing station to be decommissioned and flows diverted to the new station. A Cost Effectiveness Analysis is required to determine the most suitable network configuration.

#### 6.3.2 Factors considered are:

- Growth in the new area is expected to occur in 2 stages over 5 year periods
- Growth in the existing system is not expected to change over the analysis period
- All pump station infrastructure at the new station is consistent for both options.
- \$50,000 decommissioning costs are incurred to abandon the current station.
- An additional \$20,000 incremental gravity main upsize costs are incurred to abandon the current station
- 20 yr life cycle cost period with a 7% discount rate.
- Sensitivity analysis required at discount rates of 4% and 10%.

#### 6.3.3 System Data

#### Table 5: Option A: Retain No1 WWPS + Construct No 2 WWPS

|                          | Initial | Stage 1 (by 2019) | Ultimate (by 2024) |
|--------------------------|---------|-------------------|--------------------|
| No1 WWPS                 |         |                   |                    |
| Pump Duty (L/s)          | 11      | 11                | 11                 |
| Eff (@h and Q)           | 0.59    | 0.59              | 0.59               |
| ADWF (L/s)               | 0.31    | 0.31              | 1.21               |
| Pump Head (m)            | 8       | 8                 | 8                  |
| RM Length (m)            | 1,000   | 1,000             | 1,000              |
| RM Nominal Diameter (mm) | 150     | 150               | 150                |
| No2 WWPS                 | ł       | 1 <b>I</b>        |                    |
| Pump Duty (L/s)          | 90      | 90                | 90                 |
| Eff (@h and Q)           | 0.65    | 0.65              | 0.65               |
| ADWF (L/s)               | 0       | 2.1               | 11.5               |
| Pump Head (m)            | 40      | 40                | 40                 |
| RM Length (m)            | 1,500   | 1,500             | 1,500              |
| RM Nominal Diameter (mm) | 250     | 250               | 250                |

|                          | Initial | Stage 1 (by 2019) | Ultimate (by 2024) |
|--------------------------|---------|-------------------|--------------------|
| No2 WWPS                 |         |                   |                    |
| Pump Duty (L/s)          | 90      | 90                | 90                 |
| Eff (@h and Q)           | 0.65    | 0.65              | 0.65               |
| ADWF (L/s)               | 0.31    | 2.41              | 12.71              |
| Pump Head (m)            | 40      | 40                | 40                 |
| RM Length (m)            | 1,500   | 1,500             | 1,500              |
| RM Nominal Diameter (mm) | 300     | 300               | 300                |

# Table 6: Option B: Decommission No 1 WWPS divert flows to No 2 WWPS

#### 6.3.4 Present value Analysis

|                                       | Discounted Cashflow (NPV) (20 year Period) |                   |  |
|---------------------------------------|--------------------------------------------|-------------------|--|
|                                       | Option A (\$,000)                          | Option B (\$,000) |  |
| Lifecycle costs(7% discount rate)     | 329                                        | 307               |  |
| Discounted Cashflow Sensitivity @ 4%  | 434                                        | 389               |  |
| Discounted Cashflow Sensitivity @ 10% | 258                                        | 252               |  |

Option B is determined to be the most cost effective due to the savings achieved through the reduced maintenance costs of one site over two.

## 6.4 Example 2a

#### 6.4.1 Scenario

A hydraulic review of the Example 2 catchments has identified that the majority of flows from the proposed No 2 WWPS catchment can be designed to gravitate to the No 1 WWPS. This option however would require an upgrade of the No 1 WWPS. A Cost Effectiveness Analysis is required to determine the most suitable option.

#### 6.4.2 Factors considered are:

- Growth in the new area is expected to occur in 2 stages over 5 year periods.
- Growth in the existing system is not expected to change over the analysis period.
- An additional \$75,000 capital upgrade costs are required to enable flow diversion to No 1 WWPS (difference between downsizing No2 WWPS and No 1 WWPS upgrade).
- RM can be directed to No 1 WWPS catchment, decreasing length and lift required.
- 20 yr life cycle cost period with a 7% discount rate.
- Sensitivity analysis required at discount rates of 4% and 10%.

#### 6.4.3 System Data

#### Table 7: Option C: Retain No1 WWPS and Upgrade + Construct smaller No 2 WWPS

|                          | Initial | Stage 1 (by 2019) | Ultimate (by 2024) |
|--------------------------|---------|-------------------|--------------------|
| No1 WWPS                 |         |                   |                    |
| Pump Duty (L/s)          | 11      | 90                | 90                 |
| Eff (@h and Q)           | 0.59    | 0.71              | 0.71               |
| ADWF (L/s)               | 0.31    | 2.41              | 12.71              |
| Pump Head (m)            | 11.4    | 13.7              | 13.7               |
| RM Length (m)            | 1,000   | 1,000             | 1,000              |
| RM Nominal Diameter (mm) | 150     | 300               | 300                |
| No2 WWPS                 |         |                   |                    |
| Pump Duty (L/s)          | 3.5     | 3.5               | 3.5                |
| Eff (@h and Q)           | 0.62    | 0.62              | 0.62               |
| ADWF (L/s)               | 0       | 0.21              | 0.81               |
| Pump Head (m)            | 21      | 21                | 21                 |
| RM Length (m)            | 300     | 300               | 300                |
| RM Nominal Diameter (mm) | 100     | 100               | 100                |

# Table 8: Option C: Retain No1 WWPS and Upgrade + Construct smaller No 2 WWPS

|                          | Initial | Stage 1 (by 2019) | Ultimate (by 2024) |
|--------------------------|---------|-------------------|--------------------|
| No1 WWPS                 |         |                   |                    |
| Pump Duty (L/s)          | 11      | 90                | 90                 |
| Eff (@h and Q)           | 0.59    | 0.71              | 0.71               |
| ADWF (L/s)               | 0.31    | 2.41              | 12.71              |
| Pump Head (m)            | 11.4    | 13.7              | 13.7               |
| RM Length (m)            | 1,000   | 1,000             | 1,000              |
| RM Nominal Diameter (mm) | 150     | 300               | 300                |
| No2 WWPS                 |         |                   |                    |
| Pump Duty (L/s)          | 3.5     | 3.5               | 3.5                |
| Eff (@h and Q)           | 0.62    | 0.62              | 0.62               |
| ADWF (L/s)               | 0       | 0.21              | 0.81               |
| Pump Head (m)            | 21      | 21                | 21                 |
| RM Length (m)            | 300     | 300               | 300                |
| RM Nominal Diameter (mm) | 100     | 100               | 100                |

## 6.4.4 Present Value Analysis

|                                       | Discounted Cashflow (NPV) (20 year Period) |  |
|---------------------------------------|--------------------------------------------|--|
|                                       | Option C (\$,000)                          |  |
| Lifecycle costs(7% Discount Rate)     | 296                                        |  |
| Discounted Cashflow Sensitivity @ 4%  | 353                                        |  |
| Discounted Cashflow Sensitivity @ 10% | 255                                        |  |

The assessment of the options indicates that Option C has the lowest lifecycle costs. This is due to the deferral of capital costs; upgrade staged with development, and reduced energy costs with improved system hydraulics. It should be noted that Option B has the lowest lifecycle cost at 10% Discount Rate.